3.290 \(\int \frac{x}{\sqrt{a x^2+b x^5}} \, dx\)

Optimal. Leaf size=212 \[ \frac{2 \sqrt{2+\sqrt{3}} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a x^2+b x^5}} \]

[Out]

(2*Sqrt[2 + Sqrt[3]]*x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a
^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x
)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)
^2]*Sqrt[a*x^2 + b*x^5])

________________________________________________________________________________________

Rubi [A]  time = 0.0667158, antiderivative size = 212, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {2032, 218} \[ \frac{2 \sqrt{2+\sqrt{3}} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{b} x+\left (1-\sqrt{3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt{3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a x^2+b x^5}} \]

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[a*x^2 + b*x^5],x]

[Out]

(2*Sqrt[2 + Sqrt[3]]*x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a
^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x
)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)
^2]*Sqrt[a*x^2 + b*x^5])

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{a x^2+b x^5}} \, dx &=\frac{\left (x \sqrt{a+b x^3}\right ) \int \frac{1}{\sqrt{a+b x^3}} \, dx}{\sqrt{a x^2+b x^5}}\\ &=\frac{2 \sqrt{2+\sqrt{3}} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a x^2+b x^5}}\\ \end{align*}

Mathematica [C]  time = 0.0094612, size = 52, normalized size = 0.25 \[ \frac{x^2 \sqrt{\frac{b x^3}{a}+1} \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};-\frac{b x^3}{a}\right )}{\sqrt{x^2 \left (a+b x^3\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[a*x^2 + b*x^5],x]

[Out]

(x^2*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)])/Sqrt[x^2*(a + b*x^3)]

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 231, normalized size = 1.1 \begin{align*}{\frac{-{\frac{i}{3}}x\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}\sqrt{{-i\sqrt{3} \left ( i\sqrt{3}\sqrt [3]{-{b}^{2}a}-2\,bx-\sqrt [3]{-{b}^{2}a} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}\sqrt{-2\,{\frac{-bx+\sqrt [3]{-{b}^{2}a}}{\sqrt [3]{-{b}^{2}a} \left ( i\sqrt{3}-3 \right ) }}}\sqrt{{-i\sqrt{3} \left ( i\sqrt{3}\sqrt [3]{-{b}^{2}a}+2\,bx+\sqrt [3]{-{b}^{2}a} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}{\it EllipticF} \left ({\frac{\sqrt{2}\sqrt{3}}{6}\sqrt{{-i\sqrt{3} \left ( i\sqrt{3}\sqrt [3]{-{b}^{2}a}-2\,bx-\sqrt [3]{-{b}^{2}a} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}},\sqrt{2}\sqrt{{\frac{i\sqrt{3}}{i\sqrt{3}-3}}} \right ){\frac{1}{\sqrt{b{x}^{5}+a{x}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^5+a*x^2)^(1/2),x)

[Out]

-1/3*I/(b*x^5+a*x^2)^(1/2)*x*3^(1/2)/b*(-b^2*a)^(1/3)*(-I*(I*3^(1/2)*(-b^2*a)^(1/3)-2*b*x-(-b^2*a)^(1/3))*3^(1
/2)/(-b^2*a)^(1/3))^(1/2)*(-2*(-b*x+(-b^2*a)^(1/3))/(-b^2*a)^(1/3)/(I*3^(1/2)-3))^(1/2)*(-I*(I*3^(1/2)*(-b^2*a
)^(1/3)+2*b*x+(-b^2*a)^(1/3))*3^(1/2)/(-b^2*a)^(1/3))^(1/2)*EllipticF(1/6*3^(1/2)*2^(1/2)*(-I*(I*3^(1/2)*(-b^2
*a)^(1/3)-2*b*x-(-b^2*a)^(1/3))*3^(1/2)/(-b^2*a)^(1/3))^(1/2),2^(1/2)*(I*3^(1/2)/(I*3^(1/2)-3))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{b x^{5} + a x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/sqrt(b*x^5 + a*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{5} + a x^{2}}}{b x^{4} + a x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^5 + a*x^2)/(b*x^4 + a*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{x^{2} \left (a + b x^{3}\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**5+a*x**2)**(1/2),x)

[Out]

Integral(x/sqrt(x**2*(a + b*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{b x^{5} + a x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(x/sqrt(b*x^5 + a*x^2), x)